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INFLUENCE OF AXIAL ENERCGY SPREAD ON THE NEGATIVE-MASS INSTABILITY
IN A RELATIVISTIC NONNEUTRAL E-LAYER

Hwan-sup Uhm
Department of Physics and Astronomy
University of Maryland, College Park, Maryland 20742

and
Ronald C. Davidson*
Division of Magnetic Fusion Energy
Energy Research and Development Administration
Washington, D. C. 20545

This paper investigates the influence of an axial energy spread on

the negative-mass instability in a relativistic nonneutral E-layer aligned

~
'

parallel to a uniform axial magnetic field Bofz' The stability analysis
is carried out within the framework of the linearized Vlasov-Maxwell
equations. It is assumed that the E-layer is thin with radial thickness

(2a) much smaller than the mean radius (Ro). and that v/yo<<l. where v

Rl

is Budker's parameter and ynmv’ is the mean electron energy. Stabilfity
properties are investigated for the choice of electron distribution

*¢ srunction in which all electrons have the same value of canonical angular

- e
moment um (Pa-Po-cunat.) and a step-function distribution in axfal momen-

tum P, The negative-mass erowth rate is calculated includine the

1 fmportant stabilizine influence of axial energy spread (AE), and {t Is
2 o .

shown that a modest ecnergy spread (AR/yUmv' N oa few percent) is sutfi-

clent to stabilize perturbations with axtal wavenumber satistving

2
k Rokl.

; *0n leave of absence from the Unfversity of Maryland, College Park, Md.
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I. INTRODUCTION

In recent years, the properties of relativistic electron rings and

;
-
§
;
?

E-layers, contained in a mirror or uniform magnetic field, have been
studied experimentally in connection with plasma confinement schemes
such as Astronl’z, single-stage magnetic mirrors3’4, and electron ring

k acceleratorss-ll. One of the most basic instabilities that character-

izes relativistic electron rings and E-layers is the negative-mass
instabilitys_lﬁ. The influence of a spread in canonical angular momen-
tum on this instability has been extensively investigated in the liter-
aturelz’la’lﬁ. The present paper examines the equilibrfum and negative-mass
stability properties of a relativistic nonneutral E-layer within frame-
work of the linearized Vlasov-Maxwell equationsl7, including the impor-
tant influence of an axial energy spread. Recent experimental observa-
tions8 indicate that perturbations with finite axial wavenumber are
significantly stabilized by a small axizl energy spread.
The present analysis is carried out for an infinitely long E-layer
aligned parallel to a uniform magnetic field B0 %z [Fig. 1]. Equili-
brium and stability properties are calculated for the specific choice
of electron distribution function [Eq. (8)].
0 O 22, 8(imc’-p)
fe(H’Pe’Pz) = ——-——————iji-G(Pe—Po)Q(A P) T 172 °
ZnA(zvom) (yme™-1)
where H is the energy, Pe is the canonical angular momentum, P, is the

axial momentum, @(x) is the Heaviside step function, UEH+e$6—p:/270m is an

effective energy variable, and nys RO' Al Yo ¥ and $b are constants.
Equilibrium properties are examined in Section II. One of the important

features of the equilibrium analysis is that the equilibrium distribution
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function in Eq. (8) corresponds to a sharp-boundary density profile
with uniform axial temperature (Fig. 2). Stability properties are

investigated in Sections IIl and IV, including the ifmportant influence

T

of an axial energy spread. The stability analysis is fully electro-
magnetic and assumes that the positive ifons can be treated as a fixed
background (m{‘W) on the time scales of interest.

Introducing the geometric factor g [Eq. (44)] which is a transcen-
dental function of the eigenfrequency w and axial wavenumber k, we obtain
the dispersion relation [q. (56) ]

- 2 g ‘ o

) ~ > ~ ) 7 ] 2 0): :

(ot ) m « S [0 = ug-kR5) - 2k°R :
¢ R2 Yo @ 0 0 m'Z

0 Yo™

AE

Here v is Budker's parameter, AEﬁAE/IYOm is the axial enerpy spread, U
is the azimuthal harmonic number, mC=0B0/YOmC is the electron cyclotron
frequency, and u=w5/m3 - 1/y0 is defined in Eq. (51). A detafled numer-
ical analysis of the dispersion relation [Eq. (56)] is carried out in
Section 1V. It is found that the axial energy spread (AE) has a stroung
stabilizing influence on the nepative-mass instability, particularly

when the perturbations have sufficiently large axial wavenumber with

2.2
k"RA1 (Sec. 1V).
0
As a check on the dispersion relation given in Eq. (56), it is E
§
instructive to consider the limit ot an ultrarvelativistic (\0>>l), i
N
infinitisimally thin (n/Rn+0) E-layer, with negligibly small equilibrium E
N

self fields (p=1) and axial enerygy spread (AE=0). In this case. Eq. (56) 1

can be expressed as

2 Linik -
(w—ﬂmc) = ~(c /RO)[(Q -k RO)(v/YO)ng/m]




which is {dentical to the result obtained by Briggs and Neil16 within

the framework of a macroscopic sheet model.

bl




T, EQUILIBRIUM THEORY

As {llustrated in Fig. 1, the equilibrium contiguration consists
of a relativistic nonneutral E-laver that {s intinfte in axial extent
and aligned parallel to a wniform applied magnetic tield “M"-‘ Ihe

mean radius and radial thickness of the E-laver are denoted by RU

and 2a, respectively. The mean motion of the E-laver is in the azimuthal

direction, and the applied magnetic tield provides rvadial continement
of the electrons. As shown in Fig. 1, cvlindrical polar coordinates
(r,0,2) are introduced. The tollowing are the main assumpt inu::lh
pertaining to the equilibrium count igurat{on:

(a) Equilibrium properties are independent ot 2 (2/30=0) and
azimuthally symmetric (3/30=0) about the s-axis.

(b)) The positive fons form an immobile (m »«) partially neutrali

i
O
background. It is assumed that the equilibrium fon density nikr\

can be expressed as
) )
nli(r)-tn‘(r\ % )
e

" : QO
vhvr: :-n\ns(. {s the fractional charge neutralization, and n (v)
- o
is tlweelectron deusity.,
(¢) The spread in radial and axial momentum of the electrons is

small in comparison with the mean azimuthal momentum, i.o.,

LE = R | \.‘\

A}
where A is the characteristic spread i{n axtal momentum, \omc' {s the

and the halt -thickness a s

azimuthal electron energy at r-Rn.

related to the spread in radial momentum by Eq. (18).

sing




(d) The electron motion is generally relativistic, and the mean

equilibrium motion of the E-layer {s in the azimuthal direction, i.e.,

. Q \] N
stp v feg§,e) = n;(r)VS(r)e

g

0 s
where Vﬂ(r) is the mean azimuthal velocity of an electron fluid element,

d
and £

N is a unit vector in the 8-direction.

(e) It is further assumed that

e ()

where \‘-Neezlmc2 is Budker's parameter,
K
No = Qv [ dr rng(r\ (4)
.Rl
is the number ot electrons per unit axial length of the E-laver,
¢ is the speed of light {n vacuo, -¢ and m are the charge and rest
mass, respectively, of an electron. 1In Eq. (4), Rl and RQ denote the
inner and outer radii, respectively, of the E-laver.

Central to a description of steadv-state Vlasov equilibria are
the single-particle constants of the motion in the equilibrium tield
configuration. For azimuthally symmetric equilibria with 3/32=0,
there are three single-particle constants of the motion. These are

the total energy H,

ot J
-

ke &
H = (m vq+c‘p')1/‘—v¢0(r) ¥ (&)
the canonical angular momentum Pﬂ.

pﬁ - r|pn-(v7r\A0(r)l ’ (6)

and the axial canonical momentum P _,
“




where use has been made ot assumption (d). In Egs. (5)-(/), lower

case p denotes mechanical momentum, &O(r) is the electrostatic

potential tor the equilibrium radial self-elcectric field lE?(r)a
-Std’url. and Ao\r\ is the t-component of the equilibrium vector
potential lB;(r)-r_1(3'¥r)(rA0\|. Any distribution function that is

a ftunction only of the single-particle (onstants of the motion satisties
the steadv=state Vlasov quation. For prescnt purposes, we conaider

the equilibrium distribution function

n,.R ~ %

Ou.p P ) - 29 o B P -F M gD

o 6° & . 1/2 6 "0 z
2 A\ (hom)

~ 2
®(yme -U)
2 1/
(yme ™ =1

y v

A, P and | are constants, and

where n, is electron denasity at r=R 0

0 0*

&(x) is the Heaviside stop tunction defined by

‘ L T x 0
*x) = )
I i (e x>0 .

In Eq. (8), the encrgy variable U is Jdefined by

N

1--rm\?0-p; Al (1m

0

where 30 is the clectrostatic potential at the mean rvadins R | i.e.,
30'®0(R0). Note that U is a single-particle constant of the motion

since it is constructed from a linear combination ot H and p .
For a thin F-layer equilibrium consistent with Fq. (),

the energy variable U defined in Fq. (10) can be approximated by

A

&
(with p;u\(;m' €.




8
U=p2/2y mHb_ (£)+y, mc> (11)
P/ eYo™¥0 0 ’
where
wo(r)-[Y(r)-volmc2—6¢0(r) (12)
is the "envelope function', and
1/2
y(r)mc2={m2c4+[czPO/r+(e/c)A0(r)]2} - (13)

is the electron energy associated with the azimuthal motion. Moreover,

) ey - SR 2 ;
6¢0(r) is defined by 6¢0(r)—¢0(r)—®0. and Yome =y(r Ro)mc is the azimuthal
electron energy at r=RO. The envelope function wo(r) can be further
simplified for a thin E-layer satisfying Eqs. (2) and (3) by Taylor
expanding Eq. (12) about the mean radius RO. Retaining terms to

quadratic order in

p=r-R (14)

0 ’

and making use of equilibrium radial force balance1 on an electron

fluid element at r=R0, we find

o LB 8
wo(r) =3 Yom, P s (15)
where
2.2 2 2 2
wr—wc+wp(1 yof)/yo (16)

is the radial betatron frequency, w§=&nn2(R0)e2/YOm is the plasma

frequency-squared at r=R0, and wc=eBO/Yomc is the electron cyclotron

frequency. [See Refs. 16 and 19 for a detailed discussion of Eq. (15)].
Making use of Eqs. (11) and (15), several interesting properties
can be deduced for the class of thin E-layer equilibria described by

Eq. (8). For example, it is straightforward to show that the electron




9
density profile can be expressed as
20y a%p0(.p 7 yon -2 a(a?-p%) 7
e Plalfaly o%,7"0g & g =8 ? a7
where
1
. 2 2nil2 |
a=[2(y-vg) e /yguy (18)
is the half-thickness of the E-layer. In obtaining Eq. (17), use
has been made of (Blape)Pe=r and the identity
a
J dx(uz—xz)-1/2=n’2 ; (19)
0
Since the E-layer is assumed to be thin, we approximate Ro/r:I in
Eq. (17), and the electron density profile reduces to
" ng s ir-R0l<a ,
n (r) = (20)
(2 otherwise .
Moreover, it is straightforward to show that the axial electron
temperature profile can be expressed as
. (1 ERE (% S (0757, 8 e (0 [ v !
Tz(r)-fd p(pz/YOm)fe/Td pfe A /3y0m-con>t,, (21)

->e s
for |r—R0|<a. The electron density and axial temperature profiles are
illustrated in Fig. 2. Evidently, the equilibrium distribution

function in Eq. (8) corresponds io a sharp-boundary density profile

[Eq. (20)] with uniform axial temperature [Eq. (21) 1.
Finallv, we conclude this section by noting that the spread in
axial momentum in Eq. (8) yields a corresponding spread in total ener3y

H. From Eqs. (10), (11), and (15), we express

2 &
P P
g R SRS N M S | 2 2 ;
H Yome e¢o + 2Y0m + 2Y0m + 5 Yot P : (22)

. . B
e —— R~ e TR BN 7 TP T T e




Within the context of Eq. (2), it is valid to approximate Eq. (22) by

. S 249
H=y mc c¢0+pz/-y0m % (23)

0

It is evident from Eq. (8) that 24 1is a measure of the total spread

in axial momentum. Therefore, from Eq. (23), the total energy spread

can be approximated by

2
AE-‘X-/Zyom . (24)

v—

T ——————




11

ITI. ELECTROMAGNETIC STABILITY ANALYSIS

A. Linearized Vlasov-Maxwell Equations

In this section, we examine the linearized Vlasov-Maxwell
equations for perturbations about a thin E-layer equilibrium described
by Eq. (8). To determine stability properties, we adopt a normal-

mode approach in which all perturbations are assumed to vary with time

according to
89, )= o) exp{-iwt}

with Imw>0. Then the Maxwell equations for the perturbed electric

and magnetic fields become16

(25)
wBG) = 2L 1(x) - 1 2 Ex)
NN c “ c E QI
where
Y(x)=-e|d’p v £ (x,p) (26)
{ A X MR 3
is the perturbed current density,
0 v'Xﬁ(x;)
A T . & RONAAS IR G 0 5
fe(g,g) = eJ-w drexp{-iwt} {§(¥ ) + - SiT-fe (27)
is the perturbed distribution function, and 1=t'-t. To make the
theoretical analysis tractable, we Fourier decompose the 06- and z-
dependence of all perturbed quantities according to
@(§)=Zjdk@1(k.r)exp{i(£0+kz)} ’ (28)
'3

where k is the axial wavenumber and ¢ is an integer. Making use of




Eqs. (25) and (28), (it {8 straightforward to show that

B eh™  2le. . ik : du 3
o H\‘z(k.r) " e P d(r) + 5 l'.‘_x(k.l) e .'\‘“U\,l\ .
l\
()
where
R e
P =w A (30)
and the function &»(r\ is defined by
$(o)=irk (ko) /e . (3
Equation (29) can be expressed as
b § »
8 & | ik
} ¢ . - o - D) o L‘)
e l\_:(l\.l\ v $(r) + P.‘, l“(k.l) (

outside the E-layer, because the perturbed azimuthal current density
:lw\k.r\-l) in the vacuum region.

The perturbed axial and azimuthal electric tields l};‘\‘._\k,l) and
f\'.m(k.l')l are continuous across the beam boundarvies \r»'Rl and |'~R',\,

as (s the tunct ton j\(r\ (Fg. (3D ] Integrating Eg. (29) from v=R -8

1
to r=R +8 and taking the limit § »()4, we obtain
B, (k,RD)-B, (k,R]) = = 2 ou)elR)
(] Ji e \‘z\ 3551 ¢ x{w) ¢ 0
1 3)
R, 3
et 2 j e ik a :
+ P dri¢(r)/r + — |‘\‘v_(l\,l\ 3
w - £
where the ottective susceptibility s is detined by
}
R,
\(m\«“R )E [ aE J. 00 (3D
0" (]
: hl
and u'(R‘ denotes Lim ¢(R, t8) . For present purposes, it is also
S0
t

e

LA - e

=
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assumed that
|(A\’ Q(A\c |"‘<(L)r )
(39
1(uk/u¥)<<R0/8 .
Within the context of assumption (d) and Eq. (35), it {s valid to
approximatela’l6
¢(r)”¢(Rn) .
I-.cz(k.r)mu(k,kn) : (36)
Bcn(k.r\~BQ“(k.R0)

For convenience, in the subsequent analvsis we introduce the
normalized electric and magnetic wave udmltt:mvvs.]["l6 d. and h‘.
defined at the inner and outer surfaces of the E-layer by

. 3/ W) E or 6 R, X
dy==lr (/e Gk x)]Rt/( W (kR
(37
=r@ /A0 1= flee ‘
d ={r@/ l)‘\,?(k,l)]l{iﬁ\lcy(k.l\‘\‘ "
and
by== (kRO /[r /0B, (ko) |
+ U Ry r(d/adr Lg W Rq .
(38)

b_=tB, ;“‘"‘1”“'(“/“"”\‘ L (ko) lRl

For a beam in vacuum, the values of b, and d' depend on the geometrvic
configuration (Appendix ). Making use of Eqs. (32)-(38), it is

strafghtforward to show that

N s ') = /m“‘ .
(h_+h+)N\(R())Hkluez(k.Rn)/p ] = 5D \((..M(Rn\ A (39)

C P
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Fourier-decomposing the perturbed fields in Eq. (25), we obtain

A k& 2 iw 9 -
Bze(k,r) ke % lz(k’r) + s Elz(k,r) (40)
pr cp

in the vacuum region. Since ﬁle(k,r) is continuous across the beam
boundaries and approximately constant within the beam (Eq. (36)],
it is straightforwrad to show from Eq. (40) that

L e (FQADE, (6] ~[rQ/DE,, (6] )

R R
2 1 (41)

< +o @ o
=B£z(k’R2)-BQz(k’R1)

Substituting Eqs. (33) and (37) into Eq. (41), and making use of Eq.

(35), we find
(AR B = =i LB S iR (42)
o Mg Rl @ X o’

After some simple algebraic manipulation that makes use of Eqs. (39)

and (42), the function $(R0) can be expressed as

%} gebad = 1 (43) t

where the geometric factor g is defined by

L IR
b2 (b#b T d v,

(44)

Evidently, an evaluation of the effective susceptibility y(w) is

T TN R ey

required for a detailed stability analysis.

e

B. Effective Susceptibility

In this sectfon, we evaluate the perturbed azimuthal current

density, and the effective susceptibility y(w) defined in Eq. (34).




E——
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From the Maxwell equation X*E(§) i(w/c)B(x), we obtain
> ’ Trw e N
Egz(k.l) P qu(k.r) ik¢(r) ,
(45)
E_(k.r) + T2 B (k,r) = - & 4(r)
g e E e ggtt! ir LA *

Since the eigentrequency for the negative-mass instability is given
0
approximately by w-Quw for V/(r)=0. and since the thickness of E
(& V:
laver is much smaller than its major radius, Eq. (45) can be approximited

by

E r) - /¢) N=—ik¢(r
K z(k.l) (v“ B‘l(k.x\ ik¢(r) ,

¢

()
E(r(k.l)+(v0'r'B‘J(k,r)ﬁ—()/a|)¢(r)
After some straightforward algebra that makes usc of Eqs. (2/) and
(46), we obtain
s 0 0
= < e lx") - S 47
feg(§.g) e J—m dr exp{ lml}k °(§ ) ar.fe(H,Po.Pz\ : (47)

where &(&)-&(r)exp{i(wﬂ+kz)}. and leading-order terms have been
retained [see Eq. (35)]. Fourier decomposing Eq. (47) according to
Eq. (28) and making use of the approximation @(r)ﬁ¢(R0) [Eq. 36)],

the perturbed distribution function can be expressed as
¢ 2 ) 5 0 9
oo (ra)==1ed(R) LIk (u/oP YHL (/4P D 1T ((H,PP) (49%)

where the orbit integrat I is detined by

.0

I*J dv expl{ile(o'=0)1k(z"'-2) ~wr]} . (49

As indicated in Eq. (49), the particle trajectories, 0'(1) and




e -

16
2' (1), in the equilibrium fields are required in order to evaluate
the orbit integral I. Making use of the Hamiltonian in Eq. (5),
ft is straightforward to obtain the equations of motion. Assuming
that the electron orbit passes through the phase-space point (z,pz)
and 6'=¢ at time t'=t, we find
'.
z z+p21/y0m s
(50)
" 2
0 -0+(mv-uﬁpo/y0mR0)1 "
|
where
&g e 2 5
u’mv/mr-l/\o 5 (51)
and .\'l"\s“.‘—i‘”. [See Ret. 16 tor a detailed derivation of Eq. (50)].
Substituting Eq. (50) into Eq. (49), we obtain
I=1(w-tw_~kp_/y mhitsP, /v mR2) ) (52)
(w W =kp, [yomutsP 7y mR, . 2
From Eq. (26), the perturbed azimuthal current density can be
«‘!q\!'\'.*iﬂvd as
I (k,p)w-ew R.[d%p £ (r.p) (53)
G \'\'( i W0 [T P Tep b

where we have approximated VU”R for a thin, relativistic E-layer.

0Ve

Substituting Eqs. (48) and (52) into Eq. (53), and carrying out the

momentum intepgration, the perturbed azimuthal current density can be

expressed as
Al Y Y A
e n.w He =k "R
S O ¢ 0
b, AESE) ~p(R f— 5 s (54)
0" y.mR ) £ & &, 4.4
070 (w=fw.) =~k A /y.m
€ 0
where use has been made of a<<R fhe number ot electrons per unit

0°

ixial length ot the E-laver (N ) can be determined by substituting
e

it . ._-—-“M :



P —

17
Eq. (17) into Eq. (4). Within the context of Eq. (2), we obtain the
E approximate result Ne-dwanoko. Eliminating n, in favor of Ne in
Eq. (54) and substituting Eq. (54) into Eq. (34) gives
Neezmc ulz—szg
x(w) = -« — (55)

2 L2 2009
ZwyomRo (w-RmC) -k“ A /yom

Equation (55) is used in Sec.IV to complete the stability analysis.
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IV. NEGATIVE-MASS STABILITY PROPERTIES

Substituting Eq. (55) into Eq. (43) and making use of Eq. (24)
and the definition of Budker's parameter, v-NeeZ/mcz. the dispersion

relation for the negative-mass instability can be expressed as

2 8w 2
(et J° = - S |2 28 a? %Yy - et LB (56)
c R2 Yo W 0 0 2
0 0 YOmC

for 1§2<R0/a. In Eq. (56), g is the geometric factor defined in

Eq. (44), AE= AZ/ZYOm is the energy spread [Eq. (21)], and u=wz/w3—l/y§
[Eq. (51)]. It should be noted that Eq. (56) is valid only when
lw—QwC|<< W, [Eq. (35)]. The growth rate wi-Imm and real oscillation
frequency @ _=Rew can be determined from Eq. (56) for a broad range of
parameters k, v/yo and u-AE/Yomcz. by solving numerically the full trans-
cendental dispersion relation. [Note that the geometric factor g in

Eq. (956) is generally a complicated function of the complex eigen-
frequency w.]

For present purposes, to illustrate the influence of the axial
energy spread on the negative-mass instability, we calculate the normal-
ized electric and magnetic wave admittances defined in Eqs. (A.3) and
(A.4) by approximating w=£wc in the expressions for d, and b,. Figure
3 is a plot of sum of the wave admittances (b_+b+) and (d_+d+) versus

normalized axial wavenumber kR,, for ¢=6, y,=5, a/R0-0.02. T0/R0-1.5,

0’
and Ti=0 (no inner conductor). 1In Fig. 3, the solid and broken curves
H correspond to (b_+b+) and (d_+d+). respectively. Evidently (b_+b+) and

(d_+d+) are slowly varying functions of kRO for the range OskR0§2, where

the approximation w=€wc is certainly valid. Negative-mass stability
properties are illustrated in Figs. 4 and 5 for the range of axial wave-

numbers OskRO&Z. Generally speaking, the quantities (b_+b,) and (d_+d )
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either vanish or become infinite at certain values of k. [For example,

from Fig. 3, (b_+b+)-0 at kR.=3.1, and (b_+b+)*0 at kR0=3.5.]

0
Normal modes with axial wavenumber k for which (b_+b+)*0 or (d-+d+)+0.
are purely transverse electric (TE) or transverse magnetic (TM)
waveguide modes, respectively. The dispersion relation [Eq. (56)]

for the purely TE and TM modes will be investigated elsewhere.1

Figure 4 shows a plot of normalized growth rate wi/wc versus

kRo obtained from Eq. (56) for f=0.1, v/y0-0.02. several values of

Al
a-AE/\Omc‘. and parameters otherwise similar to Fig. 3. Two important
features are evident from Fig. 4. First, the axial energy spread
stabilizes perturbations with axial wavenumber larger than a certain

critical value. For example, perturbations with kR.>1.03 are completely

0

stabilized by a 4% energy spread (a=0.04 in Fig. 4). Second, for given

kR0¢0. the growth rate can be substantially reduced by increasing

the eneryy spread. These results are consistent with recent experimental
8 . . .

observations bv Destler et al., who find that a finite-length E-

laver (in which kR( is necessarily nonzero) is stable whenever the

)
energy spread is increased by a sufficiently large amount.

Stability boundaries in the parameter space (kRO. AE/)Omcz)
are fllustrated in Fig. 5. The solid curves correspond to the stability
boundaries (mi-O) obtained from Fq. (56) for several values of v/\O
and parameters otherwise similar to Figs. 3 and 4. For a given value
of v/yu. the region of (kRO. AE/yomcz\ parameter space above the curve

corresponds to stability (minﬂ). whereas the region of parameter

space below the curve corresponds to instability (mi‘O). For sufficiently

low beam density (v/\O-O.Ol. say), it is evident from Fig. S5 that

the system {s stable provided kkorl and 020.02. However, even for low
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beam densities, it is evident from Fig. 5 that long wavelength
perturbations with kR0§0.5 are not stabilized by an axial energy
spread, at least for the choice of distribution function in Eq. (8).
In this regard, we hasten to point out that high-harmonic pertur-
bations with small axial wavenumber can be stabilized by a spread in
canonical angular momentum.1

We conclude this section by noting that stability properties also
exhibit a sensitive dependence on the location of the conducting walls.18
Moreover, the equilibrium and stability analysis presented here can
be extended in a straightforward manner to hollow electron beams

that propagate along the z-axis with a nonzero axial velocity VS%Z.




V. SUMMARY AND CONCI.USTONS :

In this paper, we have examined the influence ot axial enerpy

spread on the negative-mass instability in a relativistic nonneutral

E-layver. The analysis was carried out within the tramework of a
linearized Vlasov-Maxwell equation. The equilibrium (Sec. 11)

and negative-mass stability (Secs. II1 and 1V) properties wvere
investigated in detail tor the choice of distribution function

in which all electrons have the same value of canonical angular momentum
and a step-tunction distribution in axial momentum P, [Eq. (8)].

A detailed numerical analvsis of the dispersion relation [Eq. (56)]

was presented in Sec. 1V. One of the most important conclusions

ot this study is that an axial energy spread can have a large influence
on stability behavior. In particular, perturbations with sufticiently
large axial wavenumber (kROQl) can be completely stabilized by a small
axial energy spread \E¥0. Moreover, in the special limiting case when

AE=0 and u=1, the stability properties are consistent with the results

14

previously obtained by Briggs and Neil.
Finally, we cmphasize that the numerical analysis presented in

Sec. 1V is based on the assumption that the geometric tactor g is a

slow varying function of k. Although this is a reasonable approximation

for O:kRnfi [Fig. 3], we expect significant modifications to the stability

behavior whenever (b +h+)‘0 or d +d+)‘0. The excitation of transverse

electric l(b_+h+)‘0] and transverse magnetic l(d“+d+\‘0] wavepuide

N

. 18
modes by the negative-mass instability is currently under investigation.
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APPENDIX

WAVE ADMITTANCE AT THE BOUNDARIES OF AN E-LAYER IN A

CYLINDRICAL CAVITY

In this section, we obtain expressions for the wave admittances
at the boundaries of an E-laver in a cyvlindrical cavity. Since the
perturbed current density vanishes in the vacuum regions outside the

E-laver, the Maxwell equations in this region can be expressed as

S E‘,(k.r)
13 3 .2y ] " -0 1)
(r ar ¥ oar - =ob s

Bcz(k‘r)

In obtaining Eq. (A.1), use has been made of Eqs. (25), (28) and (30).

The solution to Eq. (A.1) is given by

i (:\.-‘)

E_(k,¥) AJ (pr)+BN (pr) , R, <reT .
Rz = \ R 0
cd \‘\pr\+\\N o T,<r<R 5
¢

h(r(k.r\ i 1

where Jf(pr) and N((pr\ are Bessel functions of the first and second

kind, respectively, and T, and Fo are the radii of the inner and

i
outer conductors, respectively (see Fig. 1). 1In Eq. (A.2), A, B,

C and D are constants which are determined from Fgs. (37) and (38)

and the boundary conditions tor the perturbed fields.

Making use of the boundary conditions Egz(k'Ti\:“(w(k‘rn\=O'
the electric wave admittances at the inner and outer boundaries of
E-laver [Eq. (37)] can be expressed as

y ' 5 g Yo " T OGR
S:v J(\pk:\N{\pln\ J{\pln)k{\\k:\

- R T T T T R BT TR TR
+ { Jc\ph:\N(\p\u)—Jt(pro)Nt(pkz)

.

\:\. 1)
' " - A} y
i Ryp V-'V\.(ﬂl‘R‘l.)_N“\.P‘ Ty J o (pT i‘_ti?_(_“,l,\.l.),
- N R, )N Y= R ) .
N Ji\pkl V((th l(\th\Nc\vk‘
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1/2

2 9
where the prime (') denotes (1/p)(d/dr), p-(w‘/c‘-kz) , and R

1
and R2 are the inner and outer radii of the E-layer. Similarly,
the magnetic wave admittances at the inner and outer boundaries of the
E-layer [Eq. (38)] can be expressed as
' 1!
Y ; JQ(pRZ)NQ(pTO) JQ(pTO)NQ(pRz)
" o T YiaT )TV v ’
+ R,P Jl(pRz)NQ(p.o) JQ(pTO)NE(pRZ)

(A.4)
1 _1!
iy ii(pRl)NQ(pTi) J (pTN, (PR})
- ' 1 _1! 1 ’
Ry p JQKPRI)NQ(PTi) JQ(pTi)NQ(pRl)

where use has been made of the boundary conditions [(a/ar)ﬁu(k,r)]T =
i
[(3/3r)Biz(k,r)]T0=0-
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FIGURE CAPTIONS
Equilibrium configuration and coordinate system.

Electron density [Eq. (20)] and axfal temperature profiles

[Eq. (21)].

Plot of sum of wave admittances (b_+b+) and (d_+d+)
(Appendix) versus normalized axial wavenumber kRO, for

=6, y0=5, a/R0=0.02. Tn/Rn=l.5 and Ti=0.

Plot of normalized growth rate m{/mv versus kRO [Eq. (56) 1,
2
for £=0.1, v/y0=0.92, and several values of a=AE/y0mc“.

Parameters are otherwise similar to Fig. 3.

Stability boundaries [Eq. (56)] in the parameter space
(kRO, AH/yomvz) for several values of v/yo and parameters

otherwise similar to Figs. 3 and 4.
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